top of page

Material Feature List

Zinc Alloy- 

Zinc is used to make many useful alloys. Brass, an alloy of Zinc that contains between 55% and 95% Copper, is among the best known alloys. The use of Brass dates back 2500 years and was widely used by the Romans and is commonly used today, particularly in musical instruments and many hardware applications that must resist corrosion. Zinc is alloyed with Lead and Tin to make solder, a metal with a relatively low melting point used to join electrical components, pipes, and other metallic items. Other Zinc Alloys include Nickel Silver, typewriter metal, and German Silver.

Roughly one third of all metallic Zinc produced today is used in galvanizing. Zinc is used as a protective coating to an item that is experiencing corrosion. The Zinc can be applied to the object by dipping the item into a pool of molten Zinc, but most often this is accomplished through electroplating. Sacrificial Zinc Anodes are used in cathodic protection systems to protect exposed iron from corrosion. Metallic Zinc is also used for many other applications, including, but not limited to, to make dry cell batteries, roof cladding and die castings.

Applications:

Die Casting Alloys including Zamak Alloys; Zinc Base Master Alloys for Alloy Additions, Special High Grade Zinc for Karat Gold and other high purity applications; Pure Zinc and Zinc Alloys for Plating; Alloys for Metal Joining

Sourcing from: http://www.belmontmetals.com/product/zinc-alloys/

 

Aluminum Alloy- 

Aluminium alloys are alloys in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4.0–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.

Alloys composed mostly of aluminium have been very important in aerospace manufacturing since the introduction of metal-skinned aircraft. Aluminium-magnesium alloys are both lighter than other aluminium alloys and much less flammable than alloys that contain a very high percentage of magnesium.

Aluminium alloy surfaces will develop a white, protective layer of aluminium oxide if left unprotected by anodizing and/or correct painting procedures. In a wet environment, galvanic corrosion can occur when an aluminium alloy is placed in electrical contact with other metals with more positive corrosion potentials than aluminium, and an electrolyte is present that allows ion exchange. Referred to as dissimilar-metal corrosion, this process can occur as exfoliation or as intergranular corrosion. Aluminium alloys can be improperly heat treated. This causes internal element separation, and the metal then corrodes from the inside out. Aircraft mechanics deal daily with aluminium alloy corrosion.

Sourcing from:https://en.wikipedia.org/wiki/Aluminium_alloy

 

Brass- 

Brass is a metal alloy made of copper and zinc; the proportions of zinc and copper can be varied to create a range of brasses with varying properties. It is a substitutional alloy: atoms of the two constituents may replace each other within the same crystal structure.

By comparison, bronze is principally an alloy of copper and tin. However, bronze and brass may also include small proportions of a range of other elements including arsenic, phosphorus, aluminium, manganese, and silicon. The term is also applied to a variety of brasses, and the distinction is largely historical. Modern practice in museums and archaeology increasingly avoids both terms for historical objects in favour of the all-embracing "copper alloy".

Brass is used for decoration for its bright gold-like appearance; for applications where low friction is required such as locks, gears, bearings, doorknobs, ammunition casings and valves; for plumbing and electrical applications; and extensively in brass musical instruments such as horns and bells where a combination of high workability (historically with hand tools) and durability is desired. It is also used in zippers. Brass is often used in situations in which it is important that sparks not be struck, such as in fittings and tools used near flammable or explosive materials

Sourcing from: https://en.wikipedia.org/wiki/Brass

 

Malleable Iron- 

Malleable iron is cast as white iron, the structure being a metastable carbide in a pearlitic matrix. Through an annealing heat treatment, the brittle structure as first cast is transformed into the malleable form. Carbon agglomerates into small roughly spherical aggregates of graphite leaving a matrix of ferrite or pearlite according to the exact heat treatment used. Three basic types of malleable iron are recognized within the casting industry: blackheart malleable iron, whiteheart malleable iron and pearlitic malleable iron.t is often used for small castings requiring good tensile strength and the ability to flex without breaking (ductility). Uses include electrical fittings, hand tools, pipe fittings, washers, brackets, fence fittings, power line hardware, farm equipment, mining hardware, and machine parts.

Sourcing from:https://en.wikipedia.org

Ductile Iron- 

Ductile iron, also known as ductile cast iron, nodular cast iron, spheroidal graphite iron, spheroidal graphite cast iron and SG iron, is a type of cast iron invented in 1943 by Keith Millis. While most varieties of cast iron are brittle, ductile iron has much more impact and fatigue resistance, due to its nodular graphite inclusions.Much of the annual production of ductile iron is in the form of ductile iron pipe, used for water and sewer lines. It competes with polymeric materials such as PVC, HDPE, LDPE and polypropylene, which are all much lighter than steel or ductile iron; being more flexible, these require protection from physical damage.Ductile iron is specifically useful in many automotive components, where strength needs surpass that of aluminum but do not necessarily require steel. Other major industrial applications include off-highway diesel trucks, Class 8 trucks, agricultural tractors, and oil well pumps. In wind power industry nodular cast iron is used for hubs and structural parts like machine frames. Nodular cast iron is suitable for large and complex shapes and high (fatigue) loads.

Sourcing from:https://en.wikipedia.org

 

Plastic- 

Plastic is a material consisting of any of a wide range of synthetic or semi-synthetic organics that are malleable and can be molded into solid objects of diverse shapes. Plastics are typically organic polymers of high molecular mass, but they often contain other substances. They are usually synthetic, most commonly derived from petrochemicals, but many are partially natural. Plasticity is the general property of all materials that are able to irreversibly deform without breaking, but this occurs to such a degree with this class of moldable polymers that their name is an emphasis on this ability.

Due to their relatively low cost, ease of manufacture, versatility, and imperviousness to water, plastics are used in an enormous and expanding range of products, from paper clips to spaceships. 

Sourcing from:https://en.wikipedia.org

 

Stainless Steel-

In metallurgy, stainless steel, also known as inox steel or inox from French "inoxydable", is a steel alloy with a minimum of 10.5% chromium content by mass.

Stainless steel does not readily corrode, rust or stain with water as ordinary steel does. However, it is not fully stain-proof in low-oxygen, high-salinity, or poor air-circulation environments. There are different grades and surface finishes of stainless steel to suit the environment the alloy must endure. Stainless steel is used where both the properties of steel and corrosion resistance are required.

Stainless steel differs from carbon steel by the amount of chromium present. Unprotected carbon steel rusts readily when exposed to air and moisture. This iron oxide film (the rust) is active and accelerates corrosion by forming more iron oxide; and, because of the greater volume of the iron oxide, this tends to flake and fall away. Stainless steels contain sufficient chromium to form a passive film of chromium oxide, which prevents further surface corrosion by blocking oxygen diffusion to the steel surface and blocks corrosion from spreading into the metal's internal structure. Passivation occurs only if the proportion of chromium is high enough and oxygen is present.

Sourcing from:https://en.wikipedia.org

 

 

bottom of page